JBLTP Hydraulic Modeling and Flow Management Study

Rashi Gupta, PE Teri Raasch, PE Alyssa DiGirolamo, EIT

SOCWA Engineering Committee // November 18, 2021

Agenda

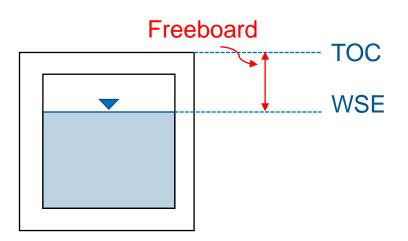
- Project background, goals, status
- Hydraulic modeling scenarios: Summary and results
- Hydraulic constraints assessment
- Discussion

Project Background

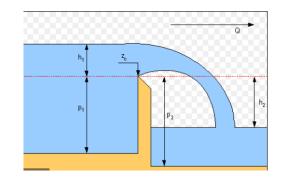
- JBLTP has permitted design capacity of 13 MGD AADF:
 - Plant 1: 9 MGD.
 - Plant 2: 4 MGD.
- Average flows have decreased, but peak flows have increased.
- Unknown peak capacity of Plant 1 and Plant 2.
- Decisions on SOCWA's future investments at JBLTP depend on hydraulics.
- Desire to make informed decisions to:
 - Maximize recent improvements.
 - Plan for JBLTP's future improvement projects.

Project Goals

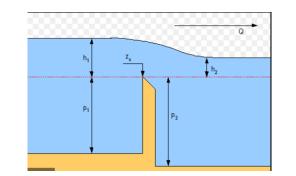
- Develop and provide plant-wide hydraulic model for SOCWA's future analysis of high-level operational input.
- Determine hydraulic capacity of JBLTP:
 - Recent extreme wet weather events (2017 & 2019).
 - Potential changes in flow from upstream member agency plants.
- Determine hydraulic feasibility and/or constraints of select scenarios.
- Identify hydraulic bottlenecks for potential future projects.


Project Status

- Data review and plant survey.
- Model development and calibration.
- Scenario development.
- Scenario results and analysis.
- Submit draft Tech Memo and hydraulic model for SOCWA use.
- Run additional scenarios and incorporate comments.
- Submit final Tech Memo and hydraulic model for SOCWA use.


Hydraulics Terminology

Freeboard


 Distance from water surface elevation to top of concrete

- Weir is Free Discharging
 - Downstream water surface is lower than weir crest

- Submerged Weir
 - Downstream water surface is higher than weir crest

Selected Scenarios

Scenario	Scenario Goals
0	Determine max capacity with 12 inches minimum freeboard ⁽³⁾⁽⁴⁾
1	Mimic Title 22 requirements at Plant 1 ⁽¹⁾
2	Mimic Title 22 requirements at Plant 2 ⁽¹⁾
3	Determine max combined flow with all units in service ^{(2) (3)}
4	Identify where spilling would occur at Plant 1 and Plant $2^{(3)(4)}$
5	Determine max combined flow with typical units in service ⁽²⁾
6	Mimic Effluent Management scenario at Plant 1 ⁽¹⁾

Notes:

(1) Maintain 6" free discharge at process weirs and minimum 12" freeboard.

- (2) Maintain 2" free discharge at process weirs and minimum 12" freeboard.
- (3) All units in service.
- (4) Submerged weirs okay.

Scenario 0: Summary and Results

<u>Summary</u>

- Determine maximum combined flow to maintain 12-inches of freeboard:
 - Freeboard: Minimum 12-inches.
 - Weirs: Submerged okay.
 - All units in service.

Results

- Total flow: 20.7 mgd.
 - Plant 1: 12.7 mgd.
 - Plant 2: 8.0 mgd.

Scenarios 1 and 2

<u>Summary</u>

- Determine maximum flow through each plant to meet Title 22 requirements:
 - Weirs: Minimum 6-inches free discharge.
 - Freeboard: Minimum 12-inches.
 - Select units in service.

R	es	u	ts

- Total flow: 11.2 mgd.
 - Plant 1: 6.9 mgd.
 - Plant 2: 4.3 mgd.

Unit	No. In Service Plant 1	No. In Service Plant 2	
Bar Screens	2 of 2	1 of 1	
Grit Chambers	1 of 1	1 of 1	
Primary Clarifiers	5 of 6	2 of 3	
Aeration Tanks	4 of 4	2 of 2	
Secondary Clarifiers	8 of 9	3 of 4	

Scenario 3: Summary and Results

<u>Summary</u>

- Determine max flow through plant to maintain 2-inches free discharge over all process weirs:
 - Weirs: Minimum 2-inches free discharge.
 - Freeboard: Minimum 12-inches.
 - All units in service.

Results

- Total flow: 16.8 mgd.
 - Plant 1: 9.7 mgd.
 - Plant 2: 7.1 mgd.

Scenario 4: Summary and Results

<u>Summary</u>

- Determine max flow through plant before spilling occurs:
 - Weirs: Submerged okay.
 - Freeboard: 0-inches, WSE is equal to top of concrete.
 - All units in service.

<u>Results</u>

- Total flow: 28.8 mgd.
 - Plant 1: 19.0 mgd.
 - Plant 2: 9.8 mgd.
 - First location at risk: Plant 1 and Plant 2 primary influent channels.
 - Second location at risk: Influent diversion structure.

Scenario 5: Summary and Results

<u>Summary</u>

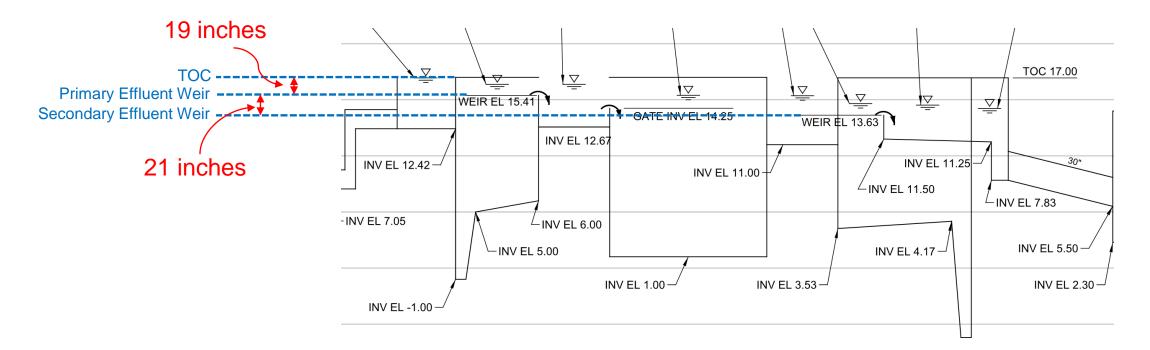
- Determine max flow through plant with typical number of units in service:
 - Weirs: 2 inches free discharging.
 - Freeboard: 12 inches.
 - Select units in service.

Unit	No. In Service Plant 1	No. In Service Plant 2
Bar Screens	2 of 2	1 of 1
Grit Chambers	1 of 1	1 of 1
Primary Clarifiers	4 of 6	1 of 3
Aeration Tanks	3 of 4	1 of 2
Secondary Clarifiers	8 of 9	2 of 4

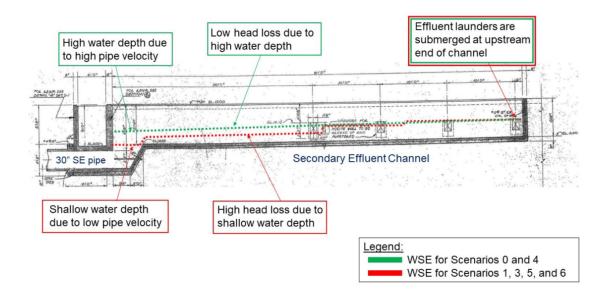
Results

- Total flow: 12.1 mgd.
 - Plant 1: 9.0 mgd.
 - Plant 2: 3.1 mgd.

Scenario 6: Summary and Results

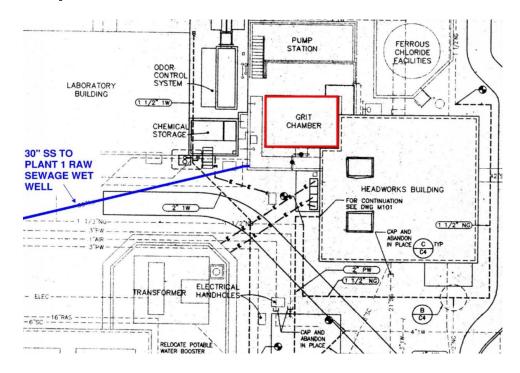

<u>Summary</u>

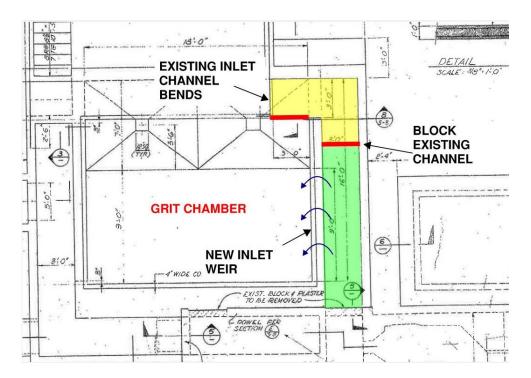
- Determine maximum number of units online at Plant 1 to meet the effluent management scenario of 6.2 mgd:
 - Minimum 6 inches free discharge at process weirs.
 - Minimum 12 inches freeboard.


Results

- Bar screens: 1 of 2.
- Grit tanks: 1 of 1.
- Primary clarifiers: 4 of 6.
- Aeration tanks: 2 of 4.
- Secondary clarifiers: 6 of 9.


- Primary Influent Channel:
 - Limited freeboard caused by existing weir and TOC elevations.
 - If more freeboard or flow through plant is needed, raising walls could be evaluated.


 Plant 1 Secondary Effluent Channel Configuration


Plant 2 Secondary Effluent Pipe

 Plant 1 30-inch Raw Sewage Pipe

 Plant 1 Grit Chamber Influent Channel

Discussion

- Comments/Questions?
- Any additional scenarios of interest?

JBLTP Hydraulic Modeling and Flow Management Study

Rashi Gupta, PE Teri Raasch, PE Alyssa DiGirolamo, EIT

SOCWA Engineering Committee // November 18, 2021

Additional Reference

// Scenarios Results Summary

Scenario	Scenario Goals	Plant 1 Max Flow (MGD)	Plant 2 Max Flow (MGD)	Combined Plant Max Flow (MGD)	
0	Determine max capacity with 12 inches minimum freeboard ⁽³⁾⁽⁴⁾	12.7	8.0	20.7	
1	Mimic Title 22 requirements at Plant 1 ⁽¹⁾	6.9	-	11.0	
2	Mimic Title 22 requirements at Plant 2 ⁽¹⁾	-	4.3	11.2	
3	Determine max combined flow with all units in service ⁽²⁾⁽³⁾	9.7	7.1	16.8	
4	Identify where spilling would occur at Plant 1 and Plant $2^{(3)(4)}$	19.0	9.8	28.8	
5	Determine max combined flow with typical units in service ⁽²⁾	9.0	3.1	12.1	
6	Mimic Effluent Management scenario at Plant 1 ⁽¹⁾	6.2	-	-	

Notes:

(1) Maintain 6" free discharge at weirs and minimum 12" freeboard.

(2) Maintain 2" free discharge at weirs and minimum 12" freeboard.

(3) All units in service.

- Primary Influent Channel:
 - Limited freeboard caused by existing weir and TOC elevations.
 - If more freeboard or flow through plant is needed, raising walls could be evaluated.
- Secondary Effluent Pipe:
 - Generates high headloss.
 - Plant 1: Significant reconfiguration and construction would be required.
 - Plant 2: Upsizing 16-inch section could increase Plant 2 flow by 1 mgd.

- Plant 1 30-inch raw sewage pipe:
 - Undersized for peak flow, appropriately sized for average flow.
 - Upsizing would improve freeboard at influent junction box, but does not improve overall plant capacity unless downstream constraints are addressed.
- Plant 1 grit chamber influent channel:
 - Generates high headloss.
 - Influent channel could be revised to reduce headloss and improve grit capture.
 - Does not improve overall plant capacity unless other constraints are addressed.